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Abstract: Accurate information on the global distribution and the three-dimensional (3D) structure
of Earth’s forests is needed to assess forest biomass stocks and to project the future of the terrestrial
Carbon sink. In spite of its importance, the 3D structure of forests continues to be the most crucial
information gap in the observational archive. The Global Ecosystem Dynamics Investigation (GEDI)
Light Detection and Ranging (LiDAR) sensor is providing an unprecedented near-global sampling
of tropical and temperate forest structural properties. The integration of GEDI measurements with
spatially-contiguous observations from polar orbiting optical satellite data therefore provides a
unique opportunity to produce wall-to-wall maps of forests’ 3D structure. Here, we utilized Visible
Infrared Imaging Radiometer Suite (VIIRS) annual metrics data to extrapolate GEDI-derived forest
structure attributes into 1-km resolution contiguous maps of tree height (TH), canopy fraction
cover (CFC), plant area index (PAI), and foliage height diversity (FHD) for the conterminous US
(CONUS). The maps were validated using an independent subset of GEDI data. Validation results
for TH (r2 = 0.8; RMSE = 3.35 m), CFC (r2 = 0.79; RMSE = 0.09), PAI (r2 = 0.76; RMSE = 0.41), and
FHD (r2 = 0.83; RMSE = 0.25) demonstrated the robustness of VIIRS data for extrapolating GEDI
measurements across the nation or even over larger areas. The methodology developed through this
study may allow multi-decadal monitoring of changes in multiple forest structural attributes using
consistent satellite observations acquired by orbiting and forthcoming VIIRS instruments.

Keywords: VIIRS-NOAA 20; GEDI Ecosystem LiDAR; vegetation 3D structure; random forest
regression models

1. Introduction

Human activities and natural processes are rapidly changing the global distribution
and structure of forests [1]. The subsequent changes in forest biomass are thought to
dominate changes in net terrestrial carbon flux, altering the global carbon cycle, affecting
species diversity, and changing Earth’s climate [1–3]. However, the total amount of carbon
contained in forest’s biomass and subsequently the future state of the terrestrial Carbon sink
remain highly uncertain [4]. Constraining this uncertainty is paramount to safeguarding
the future of our planet not least through informing sustainable local forest management
policies, forest-based natural climate solutions, and international carbon emission reduction
initiatives [5–8].

Spatially contiguous information on forest 3D structure is needed to better resolve
forest biomass distribution and net terrestrial carbon flux [9–13]. Indeed, a number of
quantitative and observable 3D forest structure characteristics (canopy cover, canopy
height, leaf area index, and vertical foliage distribution) are essential for modeling the
true magnitude of global forest biomass stocks as they exist today [14], modeling biomass
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change associated with forest disturbance and regrowth [15], modeling current and future
net forest carbon flux [16], and for understanding the impacts of forest 3D structure changes
on habitat and biodiversity [17].

While satellite-based observations have been successfully used to monitor changes
in forest cover and leaf area index [18–28], the 3D structure of forests continues to be the
most crucial information gap in the observational archive [10]. To fill this ongoing gap
in observations of forest canopy structure, the Global Ecosystem Dynamics Investigation
(GEDI) was installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on
board the International Space Station (ISS) in December of 2018. GEDI is a full waveform
Light Detection and Ranging (LiDAR) instrument. GEDI has been collecting data between
51.6◦ N and S latitude, covering the tropical and temperate forests of the Earth. Over its
two-year nominal lifetime (April 2019–April 2021), GEDI is anticipated to provide over
10 billion cloud-free waveforms at a footprint resolution of 25 m. The distribution of the
laser energy in the GEDI waveform is being used in [29,30] to derive the height, horizontal
coverage, and vertical distribution of plant material within the GEDI ~25m footprint.

GEDI is specifically designed for measuring vegetation structure [10]. Pre-launch
calibration and validation studies that simulated GEDI waveforms from Airborne LiDAR
Instruments (ALS) suggested that GEDI products can be used as a reference data [31–34].
However, the accuracies of post launch GEDI data and products might differ from the ac-
curacies of the ALS-simulated GEDI data due to, for example, geolocation inaccuracies and
spatiotemporal variations in atmospheric attenuation. A robust post-launch validation is
therefore needed to assess the accuracy of GEDI science data products. A robust validation
requires contemporaneous reference data (e.g., Terrestrial Laser Scanning and Airborne
Laser Scanning data) collocated with on-orbit GEDI data that encompass a broad range
of tropical and temperate vegetation types. To date, two studies produced an assessment
of the accuracy of on-orbit GEDI-derived canopy height product [9,35]. These studies
produced divergent assessments of the GEDI canopy height product. However, these stud-
ies used ALS data with acquisition dates spanning 2012 to 2017. It is possible that forest
growth and disturbance in the intervening period between GEDI data and ALS reference
data acquisitions influenced the findings in [9,35]. The limited set of GEDI-coincident
ground and airborne reference data are being expanded with dedicated ALS campaigns
and with community contributed field and airborne LiDAR data [10]. Once available, a
more complete validation of the GEDI products will become attainable.

The GEDI footprint level data is providing a limited sample of tropical and temperate
forest 3D structure. Integration of LiDAR sample data with wall-to-wall radar and optical
data archives (e.g., from Landsat, Sentinel-1/Sentinel-2 satellites, Tandem-X„ and Visible
Infrared Imaging Radiometer Suite (VIIRS)) provides the opportunity for contiguous multi-
annual to multi-decadal monitoring of 3D vegetation structure at spatial scales of 1-km
or less. For instance, the integration of ALS and Landsat data enabled the multi-decadal
analysis of forest extent and structural changes at national [36] and regional [37] scales. A
global map of tree height at 30-m resolution for the year 2019 was recently produced in [9]
by integrating GEDI and Landsat data. GEDI measurements could also be used to enhance
the development of training and validation data needed for generating global surface type
products from VIIRS and other global observing systems [38,39].

In this paper, we investigate the potential of extrapolating GEDI-derived forest struc-
ture attributes into 1-km resolution spatially-contiguous maps of tree height (TH), canopy
fraction cover (CFC), plant area index (PAI), and foliage height diversity (FHD) for the
conterminous US (CONUS) using Visible Infrared Imaging Radiometer Suite (VIIRS) an-
nual metrics data. Foliage height diversity is a canopy structural index that describes the
vertical heterogeneity of foliage profile [40].

VIIRS data was utilized in this study because it extends and improves upon a series of
measurements initiated by the Advanced Very High Resolution Radiometer (AVHRR), the
Moderate Resolution Imaging Spectroradiometer (MODIS), and the Operational Linescan
System (OLS). Due to their similar spatial resolution and spectral response functions, map-
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ping methods developed for VIIRS should be applicable for MODIS data, thus providing
the opportunity for operational multi-decadal monitoring of key forest structural attributes
from the 2000 MODIS first images until the nominal life expectancy of the fourth VIIRS
instrument expected to last through 2031 [41].

2. Materials and Methods
2.1. VIIRS Multitemporal Metrics

The VIIRS has 16 bands with a nadir resolution of 750 m (M-bands) and five bands
with a 375 m nadir resolution (I-bands). Following previous MODIS and VIIRS-based
global vegetation and land cover studies [22,24,39,42–44], 9 of the 16 VIIRS M-bands were
processed (Table 1) to create a set of multi-temporal spectral metrics to serve as consistent
land surface phenology inputs for mapping 3-dimensional canopy structure. This section
provides an overview of VIIRS data processing. More details have been described in
previous studies [22,39,44].

Table 1. Visible Infrared Imaging Radiometer Suite (VIIRS) bands used to map canopy structure.

Band Number Wavelength (µm)

M1 0.412
M2 0.445
M3 0.488
M4 0.555
M5 0.672
M7 0.865
M8 1.24

M10 1.61
M11 2.25

The VIIRS swath level surface reflectance data for the year 2019 were obtained from
the NOAA’s Comprehensive Large Array-Data Stewardship System (CLASS). The swath
data were then projected into a sinusoidal projection and mosaicked into global daily
data following the method described in [39]. The spatial resolution of the global mosaic
daily data was 926.65 m. These daily mosaics were then aggregated to create 5-day
and 32-day composites using the self-adaptive compositing approach which employs
spectral and temporal information to determine the general surface cover condition (e.g.,
vegetation/land, water, snow/ice) of a given pixel and adaptively select the most suitable
compositing criterion for that pixel [44]. The monthly composited values were used to
create the annual spectral and phenology metrics using the methods described in [19,39].
Compositing reduces temporal inconsistencies associated with clear-sky data availability,
cloud shadow and snow cover contamination [45] and hence may allow more consistent
mapping of vegetation structure [19,22,24].

In addition to the composite spectral data and phenology statistics, the VIIRS-derived
annual surface type data [8,10,14], data from the VIIRS Global Land Surface Phenology
product (VNP22Q2) [23], and the geographic position of each pixel encoded in coordinates
of latitude (−90–90◦) and longitude (−180–180◦) were also incorporated into the multi-
temporal metrics. VNP22Q2 data were resampled from its native resolution of 463.325 m to
the MODIS sinusoidal 926.65 m grid by averaging the values of the 4 spatially coincident
463.325 m pixels. The incorporated data from the VNP22Q2 product were the salient
transition dates of the phenology cycle (start, peak, onset of senescence, and end of the
plant growth season), the length of the plant growth cycle, the growth season integrated
two band enhanced vegetation index (EVI2) [46], and the rates of change in EVI2 values
during the vegetation growth and senescence phases. The inclusion of geographic position
was based on the hypothesis that because large scale climate patterns exert strong control
on the geographic distribution of vegetation biomes, geographic position serves as a good
predictor of land cover and vegetation class at continental to global scales [43]. Table 2



Remote Sens. 2021, 13, 442 4 of 21

provides a full list of the multi-temporal metrics used to produce the wall-to-wall maps of
CFC, CH, PAI, and FHD.

Table 2. Multi-temporal phenology metrics used to produce wall-to-wall maps of tree canopy
structure. Band x refers to one of the bands listed in Table 2.

Metric Name Description

Annual Metrics
(69 variables)

Maximum NDVI value
Minimum NDVI value of 8 greenest months

Mean NDVI value of 8 greenest months
Amplitude of NDVI over 8 greenest months

Mean NDVI value of 4 warmest months
NDVI value of warmest month

Maximum band x value of 8 greenest months.
Minimum band x value of 8 greenest months.

Mean band x value of 8 greenest months.
Amplitude of band x value over 8 greenest months.

Band x value from month of maximum NDVI.
Mean band x value of 4 warmest months.

Band x value of warmest month.

Monthly Composites
(72 variables) Band X-32 days composite value for every month in the year

5-Days composites
(only for bands 4,5,7,8, 10,

and 11)

Band X 5-days composite value for the compositing period
bounding the GEDI observation date

Solar Zenith Angle of the selected value in the compositing
procedure

VIIRS Global Land Surface
Phenology product

Greenup onset (start of growth season)
maturity onset (start of the peak of the growth season)

senescence onset (end of the peak of the growth season)
dormancy onset (end of the growth season)

Length of the growth season (dormancy-Greenup)
growth season integrated EVI2

Average rate of EVI increase for period Greenup to maturity
Average rate of EVI decrease for period Greenup to maturity

Annual Surface type Surface type IGBP class value

Pixel geographic coordinates Longitude value of VIIRS pixel in decimal degree
Latitude value of VIIRS pixel in decimal degree

2.2. The GEDI Data

GEDI detectors record the amount of laser energy reflected by earth 3D structures at
different heights above the ground [10,29]. The recorded energy as a function of distance is
the GEDI waveform. The GEDI instrument is comprised of 3 lasers, one of which is split
into two beams (“coverage” beams), while the other two remain at full power (“power”
beams). At any one time, 4 beams, each with footprint diameter of approximately 25 m, are
incident on the ground. Each of these 4 beams is then dithered every other shot across track,
to produce 8 tracks of data, separated by about 600 m across the flight track direction. For
any one track, footprint centers are separated by 60 m along track. Over the 2-year mission,
GEDI is expected to acquire waveform data for ~10 billion cloud-free footprints [10].

The distribution of the laser energy within the GEDI ~25 m footprints was used
in [29,30] to determine the height, canopy cover, and vertical distribution of plant material.
A detailed description of the GEDI L2B footprint canopy cover and vertical profile metrics
can be found in [30]. In the GEDI L2B product, the first and last modes (i.e., the detected
signal above noise) within the GEDI waveform have been associated with the highest and
lowest perceived reflecting surfaces [30]. Adam et al. [35] compared GEDI L2B canopy
height data calculated from the first and last modes of the GEDI waveform (rh100) to the
maximum of ALS-derived crown canopy height. Potapov et al. [9], on the other hand,
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compared GEDI relative height metrics data (rh90, rh95, and rh100) to the 90th percentile
distribution of ALS-based forest canopy height data. The comparisons in [9] produced
similar precision values (r2 = ~0.7) but the metric rh90 underestimated canopy height
(mean difference 2.3 m) and rh100 overestimated (mean difference −2.7 m) compared to
rh95 (mean difference 0.7 m). However, vegetation growth from the time of acquisition of
ALS reference data (2012–2017) to the time of acquisition of GEDI data (2019) might have
influenced the comparisons in [9]. In this study, the relative height difference between the
first and last modes (rh100) was used to represent canopy height (CH).

In addition to plant canopy height, the GEDI LiDAR waveform was used in [30] to
derive canopy fraction cover (CFC), plant area index (PAI), and foliage height diversity
(FHD). The GEDI-derived CFC is the percent of the ground covered by the vertical pro-
jection of canopy material (i.e., leaves, branches, and stems). CFC accounts for the gaps
between and within the canopy [10,30] and is therefore different from other commonly
used definitions such as the “crown cover” definition in [47] which does not account for
within plant canopy gaps.

The GEDI-derived PAI is related to Leaf Area Index (LAI) defined as one half of
the total leaf area per unit ground surface but differs from LAI in that it incorporates, in
addition to leaves, all canopy structural elements [30]. Finally, the GEDI-derived FHD is
calculated from the PAI vertical profile (Equation (1)) and is a measure of the complexity of
canopy structure with higher FHD values often associated with multiple canopy layers [48].

FHD = −∑
i

pi × loge pi, (1)

where pi is the proportion of vertical LAI profile in the ith layer, summed over the number
of layers.

The GEDI products also include several quality flags that indicate the overall validity
of a waveform for measuring surface structure. This section provides an overview of the
quality flags used in this study. A more complete description of the quality flags is provided
in [29,30]. The waveform “sensitivity” flag provides an estimate for the relative minimum
percentage of the waveform energy return that needs to be present in the ground for it to
be detected. The “sensitivity” flag therefore aids in identifying the ability of waveforms
to penetrate canopies and detect the ground level. The “quality” flag is an aggregation of
several individual quality assessment parameters and is intended to provide end users
with the ability to easily remove erroneous and/or lower quality returns. The “degrade”
flag indicates whether the recorded waveform contains saturated intensities. Saturated
waveforms are flagged since they do not accurately represent the return photon flux and
might degrade the precision of the ground elevation and canopy height measurements.

2.3. GEDI Data Processing

The GEDI level 02B product data granules [49] over North America were obtained
for the two months of June and July 2019. Data from June and July were selected since
for most of the conterminous US, except for some arid areas, tree canopy during the
selected period is at or near full leaf out [23]. The obtained data contained 254,550,672
GEDI level 02B footprints of tree height, canopy cover, and vertical distribution of plant
material. To select the highest quality data, the GEDI data were further filtered to remove
the waveforms flagged as unsuitable for measuring canopy structure (“Quality flag” = 1),
flagged as detector-saturated (“Degrade flag” = 1), or had sensitivity values <0.95. The
sensitivity value of 0.95 was selected to reduce the proportion of false positive ground
returns [50]. The application of these filters removed most of the data collected from the
GEDI “coverage” beams, cloud-contaminated observations, and observations taken over
water bodies [9,10]. The filtering resulted in a subset of 27,361,244 GEDI footprints or
~10.75% of the data collected over the study area during the two months of June and July.

The remaining GEDI level 02B data were then mapped into the VIIRS standard global
1-km Sinusoidal grid system. This resulted in 1,324,640 of collocated VIIRS-GEDI paired
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data records. The number of GEDI footprints falling within a collocated VIIRS grid cell
ranged between 1 and 29 observations except for the VIIRS grid cells where the ascending
and descending GEDI tracks intersected. In the latter case, the maximum number of
GEDI observations falling within a VIIRS grid cell reached a maximum of 59 observations.
Some 349,634 (or 26.4%) of the collocated VIIRS-GEDI grid cells contained 20 or more
GEDI footprints and 580,744 (or 43.8%) of the collocated VIIRS-GEDI grid cells contained
10 or less GEDI footprints. The remaining VIIRS grid cells (394,471) contained 11 to
19 GEDI footprints.

The average values of GEDI products within the coincident VIIRS grid cells were
calculated in order to investigate the relation between VIIRS and GEDI data products. The
output are metrics of GEDI-VIIRS paired collections. However, only GEDI-VIIRS paired
collections calculated from 20 or more GEDI observations were retained. The selection of
the cutoff value of 20 was made to minimize the errors associated with under-sampling of
GEDI observations within a VIIRS grid cell while maintaining a sufficiently large sample
of GEDI-VIIRS paired collections that can capture variations in canopy structure across the
study area. The resulting GEDI-VIIRS metrics contained 349,634 paired records relating
VIIRS data to GEDI-derived CH, CFC, PAI, and FHD.

The GEDI-VIIRS paired collections were split into calibration and validation subsets.
The calibration subset was drawn from a random sampling of half of the downloaded GEDI
tracks. The validation subset were derived from the remaining GEDI tracks (Figure 1).
Selecting independent GEDI tracks for model calibration and validation, especially when
the geographic position is included as an explanatory variable, should reduce the impacts
of spatial autocorrelation on model validation results [43,51]. The resulting GEDI-VIIRS
training subset contained 162,477 paired records, whereas the validation metrics contained
187,157 paired VIIRS-GEDI records.

Figure 1. The spatial distribution of Global Ecosystem Dynamics Investigation (GEDI)-VIIRS paired
data for model calibration (blue tracks) and model validation (green tracks).

2.4. Calibration and Validation of the Random Forest Regression Models

The paired GEDI-VIIRS calibration data were used to train four random forest regres-
sion models [52] that can predict GEDI-like CH, CFC, PAI, and FHD. In total, 159 VIIRS-
derived multi-temporal phenology metrics (Table 2) were used as input features (i.e.,
independent variables) in model construction.
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Random forest regression models are an ensemble learning method. The method
grows a user-defined number of regression trees and averages their predictions. In random
forests, each tree in the ensemble (i.e., forest) is built from a sample drawn with replacement
(i.e., a bootstrap sample) from the training set. Furthermore, when splitting each node
during the construction of a tree, the best split is found either from all input features or
from a random subset of inputs defined by the user [52]. The size of the subset of inputs
and other regression tree model hyper-parameters (e.g., number of trees in the forest, the
maximum depth of the regression trees, the minimum number of training samples required
to split a node, and the minimum number of training sample to form a leaf) that produce
optimal model performance can be estimated by an exhaustive search over user specified
parameter values or through a randomized sampling from a user specified distribution of
parameters settings [53].

To optimize model performance, the hyper-parameter values of the random forest
models were approximated through a randomized sampling of 300 parameter setting. The
300 hyper-parameter samples were obtained from the distributions outlined in Table 3.
Accordingly, a total of 1200 random forest models were evaluated (300 for each of the four
random forest regression models). A randomly selected subset of the calibration data (15%
of the calibration dataset) were used to search for the optimal hyper-parameter values. The
use of only 15% of calibration data to tune the hyper-parameters of the models was done
to maintain a reasonable utilization of computing resources.

Table 3. The minimum, maximum, and interval values of the linear distribution function of the hyper-parameters from
which 300 parameter setting were randomly selected.

Hyper-Parameter Minimum Value Maximum Value Interval Value

Number of Trees 100 2000 211
Maximum Tree Depth 10 110 10

Minimum Number of samples to split a node 10 410 100
Minimum number of samples in a leaf 5 205 50

Size of input features subset 12 159 85

The hyper-tuned random forest model parameters that better explained the out of bag
sample variances of the GEDI-derived CH, CFC, PAI, and FHD (i.e., the models with the
highest evaluated r2 value) were retained (Table 4). The retained hyper-parameters were
subsequently used to calibrate four random forest regression models using the complete
training dataset of 162,477 paired GEDI-VIIRS records. Model hyper-parameter and model
calibration were performed using the Scikit-learn platform in Python [53].

Table 4. Optimal hyper-parameter values for the four Random Forest Regression models.

Model Output Number of
Trees

Maximum
Tree

Depth

Minimum
Number of
Samples to

Split a Node

Minimum
Number of

Samples in a
Leaf

Size of Input
Features
Subset

Node Split
Criterion

Canopy Height (CH) 733 90 5 10 53 MAE¥
Plant Area Index

(PAI) 522 60 5 10 53 MAE

Canopy Fraction
cover (CFC) 733 90 5 10 53 MAE

Foliage Height
Diversity (FHD)

Index
733 90 5 10 53 MAE

MAE¥: median absolute error.
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Model validation was performed on the independent validation sample of 187,157
GEDI-VIIRS paired records derived from the GEDI granules not used in model calibration
(see Section 2.3 for more details). The spatial distribution of the validation sample is
shown in Figure 1. The four calibrated random forest regression models were then used to
predict the four canopy structural elements CH, CFC, PAI, and FHD using VIIRS phenology
metrics as model inputs. These VIIRS-derived CH, CFC, PAI, and FHD were compared to
their corresponding GEDI-derived values in order to evaluate the performances of the four
random forest regression models. The evaluation criteria were the ability of the models to
explain the variances observed in the GEDI-derived canopy structural elements (R squared
values as a measure of the precision of the models); and the accuracy of the four models
measured by calculating the mean and median absolute errors as well as the root mean-
squared error (RMSE). We also investigated model bias by calculating the distribution of
differences between model-derived canopy structural elements and their corresponding
GEDI-derived values at multiple intervals of the variables’ distribution.

2.5. Derivation and Assessment of Vegetation Structure Attributes for CONUS

The calibrated random forest regression models were applied to the 2019 multi-
temporal phenology metrics (Table 2) in order to produce wall-to-wall maps of canopy
height, fraction canopy cover, plant area index, and foliage height diversity index for the
conterminous US. In producing the wall-to-wall maps, water bodies were not processed
since the GEDI data used in model calibration did not include observations over water.
The 926.65-m grid size water mask was calculated from the global 231.66-m land/water
product [54]. Any 926.65-m was flagged as a water pixel if any of the 16 spatially coincident
pixels in the original product were classified as water pixels.

Summary statistics and histograms were used to assess variations in the spatial dis-
tribution of the VIIRS-derived forest attribute values between ecoregions. The ecoregion
boundaries used were the Environmental Protection Agency (EPA) level 1 and level 3 ecore-
gion boundaries. EPA ecoregions are identified by analyzing the patterns and composition
of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and
integrity [55–57]. Spatial patterns of forest structure attributes were expected to conform to
the boundaries of EPA ecoregions since the biotic and abiotic phenomena used to delineate
the ecoregions include geology, landforms, soils, vegetation, climate, and land use; all
factors known to influence potential natural vegetation, its type and structure.

3. Results
3.1. Random Forest Model Validation

Results from the comparison of the VIIRS-derived canopy attributes with their cor-
responding GEDI-derived attributes are summarized in Table 5. The precision (degree to
which variations in GEDI-derived values were explained by the models) of the FHD model
was higher (r2 = 0.83) than that for the other models with the PAI model having the lowest
precision (r2 = 0.76).

Table 5. Random Forest Regression models performance metrics calculated using set-aside validation samples.

Model Output Median Absolute Error R Squared Mean Absolute Error RMSE

Canopy Height (CH) (m) 1.22 0.80 2.09 3.35
Plant Area Index (PAI) 0.12 0.76 0.24 0.41

Canopy Fraction Cover (CFC) 0.03 0.79 0.06 0.09
Foliage Height Diversity (FHD) 0.14 0.83 0.18 0.25

When calculated over the entire data range, comparisons between the modeled and
GEDI-derived values had negligible bias and offset values (Figure 2). However, when the
distribution of the differences between the VIIRS-derived and the GEDI-derived values
were plotted for strata representing intervals drawn from the range of each canopy attribute,
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it was noticed that the canopy height model underestimated GEDI-derived canopy height
data for tall (>27 m) forests and the Plant Area Index model underestimated the GEDI-
derived Plant Area Index at index values greater than 2 (Figure 3). Underestimation of
fraction tree cover in denser forests were less pronounced while the comparisons of FHD
values showed good correspondence between the modeled and reference data for all strata
(Figure 4).

Figure 2. Comparisons between VIIRS modeled and GEDI-derived: (a) canopy height; (b) canopy fraction cover; (c) plant
area index; and (d) foliage height diversity. For graphical clarity purpose, the scatter points are a representation of a random
selection of small subset from the validation dataset.

Figure 3. Cont.
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Figure 3. Distribution of differences between (a) VIIRS-modeled and GEDI-derived canopy height; and (b) VIIRS-modeled
and GEDI-derived Plant Area Index.

Figure 4. Distribution of differences between (a) VIIRS-modeled and GEDI-derived fraction cover; and (b) VIIRS-modeled
and GEDI-derived foliage height diversity.

3.2. Wall-to-Wall Maps of Canopy Structure for the Conterminous US

The four random forest regression models were used to extrapolate from GEDI products
wall-to-wall maps of canopy height, canopy fraction cover, plant area index, and foliage height
diversity for the conterminous US using the phenology metrics derived from the observations
acquired by the VIIRS instrument onboard the NOAA-20 satellite for the year 2019. Overlaying
the EPA ecoregions on these maps showed distinct variations in the spatial patterns of forest
structure attributes between EPA level III ecoregions (Figures 5 and 6). This was expected



Remote Sens. 2021, 13, 442 11 of 21

since the factors that were used to delineate the ecoregion boundaries reflect the aggregate of
geographic characteristics (both natural and anthropogenic) that determine potential vegetation,
its type, horizontal distribution, and vertical profiles. The remainder of this section further
examines the relation of EPA ecoregions to the VIIRS-derived forest attributes.

Figure 5. (a) Canopy height (CH) map (m) and (b) canopy fraction cover (CFC) maps for the
conterminous US for the year 2019. Close-up examples illustrate (c) CH variations in the ecoregions
of the Northwestern Forested Mountains, and (d) CFC variations between the Appalachians and the

Piedmont Plateau. Key:
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Figure 6. (a) Plant area index (PAI) and (b) foliage height diversity (FHD) maps for the conterminous
US for the year 2019. Close-up examples illustrate (c) PAI variations in the Appalachians and (d)

unexpectedly high FHD values in the Sierra Nevada range. Key:
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The VIIRS-modeled canopy height map (Figure 5a) demonstrated canopy height
(CH) variations across natural forest and ecoregion types in the conterminous US. The
tallest modeled tree heights were in the Klamath Mountains and the Cascades of the
Northwestern Forested Mountains as well as in the coast range of the Marine West Coast
Forests (Figure 5c). These ecoregions are habitats for very tall conifer species including
the coast Douglas-fir (Pseudotsuga menziesii ssp. menziesii), the Western Red Cedar (Thuja
plicata), the coast Redwood (Sequoia sempervirens), and Sitka Spruce (Picea sitchensis). The
next modeled tallest trees were in the North Cascades, Eastern Cascade slopes and foothills,
and in the northern reaches of the Sierra Nevada range. These regions are also home
to the tall coniferous species of Douglas-fir, Western Red Cedar, and Jeffrey pine (Pinus
jeffreyi). Similarly, modeled tree height results suggest that some forested regions in the
Northern Rockies are also taller than the Eastern temperate forests and the Northern
Hardwood Forests of the US (Figures 5a and 7a). Modeled canopy height values in the
Eastern Temperate forests also show height variation related to natural forest types, clearly
separating taller Appalachian and Blue Ridge Mountain forests from lower canopy height
forests of the Piedmont Plateau, the Southeastern Plains, and the Southern Coastal Plains
(Figure 5a). However, the forests of the Piedmont Plateau were, in general, taller than the
northern hardwood forests of the Great Lakes (Figure 7b).

Results from the canopy fraction cover (CFC) model showed several ecoregions with
expansive forests characterized by high percentage canopy cover (Figure 5b). For example,
the landscapes of the Blue Ridge and the Central Appalachians (Figure 5d) had a median
VIIRS-derived percentage canopy cover greater than 55%. In general, most of the natural
forest types of the Eastern Temperate forests had a median VIIRS-derived canopy fraction
cover exceeding that of the forests of the Northwestern Forested Mountains except for the
sub ecoregions of the cascades and the Coast Range (Figure 7c). The latter sub-regions
had median percentage cover values comparable to the Eastern Temperate Forests and the
Northern hardwood forests.

VIIRS-modeled Plant Area Index (PAI) values were found to be higher in forests
with tall trees and high percentage canopy cover (Figure 6a). Large areas of the Blue
Ridge and the Central Appalachians had PAI values greater than 2.75. In comparison,
fewer forested areas had PAI values greater than 2.75 in the South-Western Appalachians,
the Western Allegheny Plateau, and in the Northwestern parts of the Interior Plateau
(Figure 6c). Some patches of the tall forests in the Cascades, Coast Range, and to a lesser
extent in the Klamath mountains ecoregions had VIIRS modeled PAI values between 2.0
and 2.75. Large areas with relatively high VIIRS-modeled PAI values were also found in
Ouachita/Boston Mountains ecoregions, and Northern Appalachian/Maritime Highlands.
Except for the Cascades and Coast range, most of the Northwestern Forested Mountains
had lower PAI than the Northern Hardwood Forests and the Eastern Temperate Forests
(Figure 7d).

The spatial arrangements of the VIIRS-modeled foliage height diversity (FHD) values
showed different spatial patterns from those for PAI, CFC, and CH (Figure 6b). Compared
to other ecoregions with similar canopy height, and canopy fraction cover, the FHD values
over large areas of the Sierra Nevada range were surprisingly high (Figure 6d). Similarly,
the relatively shorter and sparse coniferous forests of the Middle and Southern Rockies
ecoregions had, on average, similar FHD values to the taller and denser canopies of
Klamath Mountains. In general, median FHD values were highest in the Northwestern
Forested Mountains followed by the Eastern temperate forest, and the lowest median FHD
values were modeled for the Northern Hardwood Forests (Figure 7e). The distribution
of very high FHD values were in the sub-regions of the Appalachians, Ouachita/Boston
Mountains ecoregion, the Cascades, Klamath Mountains, and large swaths of the Sierra
Nevada range (Figure 6b).
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Figure 7. (a) Environmental Protection Agency level 1 boundaries of major forested ecoregions in the conterminous US
displayed on a 3 band color rendering of CH (Red band), CFC (Green band), and PAI (Blue band). (b–e) are the histogram
distributions of (b) CH, (c) CFC, (d) PAI, and (e) FHD inside the Eastern Temperate Forests (grey continuous line), the
Northern Hardwood Forests (black line), and the West Coast and North Western Mountain Forests. Key: CH—Canopy
Height; CFC—Canopy Fraction Cover; PAI—Plant Area Index; FHD—Foliage Height Diversity.
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The multiband color rendering of CH (red band), CFC (green band), and PAI (blue
band) further illustrates how these three forest structural attributes vary across the CONUS
(Figure 7a). The color intensity of the Red-Green-Blue bands in Figure 7a is linearly related
to the spatial distribution of its corresponding forest structure attribute values. Compared
to other forests in the CONUS, forests with relatively high CH, CFC, and PAI values
are rendered in white tones such as in the Marine West Coast Forests, the Cascades, and
Central Appalachians. Darker red/orange tones such as in the central and northern Rockies
represent more open canopy with relatively tall trees. Darker green tones such as in the
Piedmont Plateau represent dense canopy with relatively shorter trees. Black tones in
Figure 7a are non-forested areas.

4. Discussion

After its nominal two-year lifetime, GEDI will have covered the majority of 1-km cells
between 51.6◦ N and S with two or more ground tracks [34]. However, cloud contamina-
tion, track spacing, clumping in the ISS orbital tracks, and removal of GEDI waveforms
unsuitable for measuring canopy structure can result in large coverage gaps at the 1-km
grid [31,58]. In this study, only 10.75% of the GEDI footprints were retained after filtering
out waveforms flagged as “low quality” and waveforms with a sensitivity value <0.95.
The estimation of forest structure attributes for the 1-km grid cells that have few or zero
“high quality” GEDI waveforms can benefit from using statistical models that integrate
GEDI-derived forest structure data with wall-to-wall satellite images [31,58]. Similarly,
the GEDI L4B 1-km gridded science data product will use statistical models that utilize
wall-to-wall satellite images to estimate above ground biomass in grid cells with less than
two coincident GEDI ground tracks [10].

This study demonstrated the potential of using random forest regression models and
VIIRS data to extrapolate the GEDI-derived forest structure attributes into wall-to-wall
maps of CH, CFC, PAI, and FHD. It should be noted that the GEDI and VIIRS-derived PAI
are different from True PAI and LAI since large-footprint LiDAR systems cannot directly
measure leaf clumping or leaf angle distribution. End users are therefore recommended to
apply conversions based on their best knowledge to convert GEDI’s PAI to true PAI and
LAI for running earth system models [30].

The accuracy of the modeled results in this study depended on several factors, notably
the quality and availability of reference LiDAR data, the quality and consistency of the
optical VIIRS data, and any limitations of the ability of the statistical models, to accurately
predict the outputs without bias. One factor which could have affected the generalization
ability of the models was the number of cloud-free “high-quality” GEDI observations used
to calculate the mean values of the canopy structural attributes within the 1-km VIIRS
grid cell. The number of GEDI observations ranged between 20 and 59. Especially in
heterogeneous landscapes, under-sampling can result in high mean standard errors [59]
and thus in inaccurate representation of canopy structural attributes at the 1-km resolution
grid cell [34,43]. The availability of GEDI observations is expected to increase as soon
as the data collected during the full leaf-out period in 2020 become publically available.
Furthermore, the expected future availability of more GEDI data will increase the size
of the GEDI-VIIRS training sample for some of the currently underrepresented surface
types (e.g., human settlements and landscapes with frequent cloud cover). Therefore, the
expected increase in GEDI data availability should increase the accuracy of model outputs.

In addition to GEDI data availability, other issues still exist in GEDI data that can affect
model performance. Surface slopes, for instance, can affect tree height estimation by LiDAR
instruments [60,61]. While the GEDI footprint size was selected to limit the vertical mixing
of vegetation and ground signals caused by surface slope [10], comparisons of the GEDI
height metric (RH95) with airborne laser scanning (ALS) data in [9] revealed that RH95
tends to overestimate canopy height in areas of complex topography and sparse tree cover.
Additional corrections of the footprint-level data may therefore be required to reduce slope-
induced canopy height uncertainty [9]. Furthermore, residual geolocation errors of GEDI
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data were also found to affect the calibration and validation of the statistical models [9].
Currently available GEDI data from [62] has a horizontal geolocation accuracy between 10
and 20 meters [10] which was found to affect the performance of Landsat-based tree height
models [9]. Future calibration process is expected to reduce the geolocation error down to
8 m horizontal [10]. Nonetheless, the impacts of surface slopes and residual geolocation
errors on the results of this study should be less pronounced than the impacts surmised
in studies utilizing higher spatial resolution optical data [9]. Aggregating LiDAR data
to a 1-km grid cell size is expected to reduce model uncertainty due to spatial averaging
of errors [5,59,63–66]. For instance, the impacts of LiDAR positioning errors on biomass
prediction errors [63,64] and on the prediction errors of tree canopy attributes [66] were all
found to decrease exponentially with mapping resolution [59]. A theoretical analysis on
how spatial aggregation can reduce spatial random noise and improve the accuracy and
precision of predictive models is presented in [67].

In addition to inherent errors in GEDI data, validation results using the reserved
sample of 187,157 VIIRS-GEDI observations showed an underestimation of canopy height
for tall (>27m) forests and an underestimation of Plant Area Index at index values greater
than 2.5. Other studies integrating LiDAR and optical data using regression forests (RF) or
regression trees similarly reported an underestimation of tree height in tall forests [9,68].
This might be due to (1) the problematic behavior of the random forest regression mod-
els in situations where the training and prediction inputs differ in their range and/or
distributions (i.e., covariate shift); (2) the low sampling rate in the training data of very
tall forests; (3) the loss of sensitivity of optical data, especially in the visible spectrum, to
increasing LAI/PAI values [26,27,69]; and (4) due to the previously discussed errors in
the GEDI training data. Highly localized calibration of Landsat-based models of canopy
height were found in [70] to improve model performance and reduce model biases at either
edge of the data range. Substituting RF models with Deep Learning models might reduce
model biases at the higher end of the distribution of canopy height and PAI values. Indeed,
recent applications of deep learning (DL) regression models to retrieve continuous canopy
structural attributes [68,71,72] showed promising results. DL models were found in [68] to
outperform RF models in mapping canopy height in Northwestern China. Convolutional
Neural Networks (CNNs) applied to Sentinel-2 data to estimate vegetation height were
demonstrated to have better sensitivity to the taller canopy heights in [72] than RF models
applied to Landsat data in [9] and to VIIRS-data in this study.

It should be stressed that while the resulting 1-km VIIRS-derived maps of forest
attributes showed good agreements with the GEDI-validation data, the GEDI-VIIRS com-
parisons cannot be construed as accuracy assessments of the derived 1-km maps. These
comparisons are a representation of the ability of the models to extrapolate GEDI-like forest
structure attributes across the CONUS. A robust accuracy assessment should consider the
errors in the GEDI-derived products. Results from the GEDI pre-launch calibration and
validation studies suggested GEDI ability to measure subtle variations in the complex
vertical canopy structure [50] at sub-meter vertical accuracy [10,30]. Several studies also
demonstrated the added value of incorporating simulated GEDI data into models that map
forest structure and biomass from space-born Interferometric Synthetic Aperture Radar
data [31,58,73]. However, the accuracies of post launch GEDI data and products might
differ from the accuracies of the ALS-simulated GEDI data due to, for example, geolocation
inaccuracies, and spatiotemporal variations in atmospheric attenuation. A robust post-
launch validation is needed to assess the accuracy of GEDI science data products. A robust
post-launch validation requires contemporaneous reference data (e.g., Terrestrial Laser
Scanning and Airborne Laser Scanning data) that are collocated with on-orbit GEDI data,
and encompasses a broad range of tropical and temperate vegetation types. The acquisition
and processing of these data is a global collaborative effort that is being coordinated by
the GEDI calibration and validation program. These reference data, once available, will be
used by the GEDI team to validate GEDI performance against design requirements, assess
the repeatability of the GEDI level 1 and 2 product variables, and verify their accuracy [10].
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Other approaches are currently being tested to produce 1-km or finer scale wall-to-
wall maps of 3D vegetation structure. These include a spatially interpolated GEDI-derived
level 3 gridded canopy vegetation metrics [10], the fusion of GEDI with interferometric
SAR [31,58,74,75], and the fusion of GEDI and ICESAT-2 data with moderate (10–30 m)
resolution optical remote sensing data [9,68,72]. While Sentinel-1/2 and Landsat data were
utilized to derive tree height and tree cover products at much finer spatial detail [9,68,72]
than the VIIRS-derived products, they can be subject to data gaps in cloudy regions
and in regions with sparse Landsat/Sentinel-2 data record. Compared to finer spatial
resolution sensors, the VIIRS very high data acquisition rate reduces the effects of clouds
and incomplete atmospheric correction on the temporal consistency of VIIRS data which
should in turn reduce spatial and inter-annual fluctuations in modeled results that would
otherwise be caused by atmospheric contamination. Furthermore, the generalization ability
of parametric and non-parametric statistical models was found to be inversely related to
spatial scale [59,64] as a results of the spatial aggregation of errors [5,63–65] and because
aggregation reduces the contamination of a pixel reflectance values from reflected light
originating beyond the pixel’s area (i.e., aggregation reduces the impacts of the sensor’s
point spread function or PSF) [76].

Improving the accuracy of the statistical models will enable a more precise analysis
of inter-annual and multi-decadal forest dynamics. Robust models will enable the annual
monitoring of changes in forest structural attributes. This is essential for monitoring
post disturbance forest regrowth, forest degradation, and carbon emissions from land
conversions. It is expected that more robust models can be achieved by (1) the increased
availability of the GEDI data; (2) the planned improvements to the GEDI data and the
quality of its products [9,10]; (3) and tuning the hyper-parameters and parameters of deep
learning algorithms.

5. Conclusions

Accurate, multi-year, 3D vegetation structure data at spatial resolutions of 1-km or
less are needed by the ecosystem science community to constrain the errors associated with
modeling above ground biomass (AGBM), Net Ecosystem Exchange (NEE), and Carbon
fluxes associated with forest disturbance events and post-disturbance forest recovery [1].
The higher the accuracy of the derived 3D vegetation structure, the more feasible it is
to precisely model biomass and Carbon fluxes especially where the scale of mapping
matches the important scales of vegetation dynamics and the underlying environmental
gradients [1].

This study demonstrated the feasibility of integrating GEDI-derived tree canopy struc-
ture data with VIIRS-derived multi-temporal phenology metrics to produce contiguous
maps of tree canopy height, canopy fraction cover, plant area index, and foliage height
diversity. Unfortunately, the limited availability of reference data did not allow for a robust
accuracy assessment that considers the propagation of the errors that resulted from using
the modeled GEDI forest structure products. Nevertheless, if the GEDI-derived tree canopy
data do provide a valid representation of canopy 3D structure as suggested by GEDI
pre-launch validation studies, the VIIRS-derived maps produced in this study can assist
in modeling the true magnitude of global forest biomass stocks and for prognosticating
future trends in the strength of the land carbon sink.

Future endeavors will focus on increasing the robustness of the statistical models
to enable multi-decadal monitoring of forest dynamics at global scale using the entire
VIIRS-NPP and MODIS data records. Extending the methods presented in this study to
global coverage may require training separate models for each biome or for each vegetation
type as suggested in [9,72] in order to overcome the limitations of model overfitting when
employing very large training datasets.

Furthermore, it will be worthwhile to evaluate the potential of developing global 3D
vegetation structure data using the VIIRS 350m I bands with a precision that is sufficient
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to calculate about 80% accurate 500 m biomass maps as this would represent a significant
advance forward and provide the most accurate baseline map of carbon stocks to date [10].
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